This project presents an implementation and designing of safe, secure and smart home with enhanced levels of security features which uses IoT-based technology. We got our motivation for this project after learning about movement of west towards smart homes and designs. This galvanized us to engage in this work as we wanted for homeowners to have a greater control over their in-house environment while also promising more safety and security features for the denizen. This contrivance of smart-home archetype has been intended to assimilate many kinds of sensors, boards along with advanced IoT devices and programming languages all of which in conjunction validate control and monitoring prowess over discrete electronic items present in home.Recurrent Neural Networks and Long Short-Term Memory Networks: Tutorial and Survey
This is a tutorial paper on Recurrent Neural Network (RNN), Long Short-Term Memory Network (LSTM), and their variants. We start with a dynamical system and backpropagation through time for RNN. Then, we discuss the problems of gradient vanishing and explosion in long-term dependencies. We explain close-to-identity weight matrix, long delays, leaky units, and echo state networks for solving this problem. Then, we introduce LSTM gates and cells, history and variants of LSTM, and Gated Recurrent Units (GRU). Finally, we introduce bidirectional RNN, bidirectional LSTM, and the Embeddings from Language Model (ELMo) network, for processing a sequence in both directions.A Cookbook of Self-Supervised Learning
Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.Synthpop++: A Hybrid Framework for Generating A Country-scale Synthetic Population
Population censuses are vital to public policy decision-making. They provide insight into human resources, demography, culture, and economic structure at local, regional, and national levels. However, such surveys are very expensive (especially for low and middle-income countries with high populations, such as India), time-consuming, and may also raise privacy concerns, depending upon the kinds of data collected.
In light of these issues, we introduce SynthPop++, a novel hybrid framework, which can combine data from multiple real-world surveys (with different, partially overlapping sets of attributes) to produce a real-scale synthetic population of humans. Critically, our population maintains family structures comprising individuals with demographic, socioeconomic, health, and geolocation attributes: this means that our ``fake'' people live in realistic locations, have realistic families, etc. Such data can be used for a variety of purposes: we explore one such use case, Agent-based modelling of infectious disease in India.
To gauge the quality of our synthetic population, we use both machine learning and statistical metrics. Our experimental results show that synthetic population can realistically simulate the population for various administrative units of India, producing real-scale, detailed data at the desired level of zoom -- from cities, to districts, to states, eventually combining to form a country-scale synthetic population.