The State of Lithium-Ion Battery Health Prognostics in the CPS Era
Lithium-ion batteries (Li-ion) have revolutionized energy storage technology, becoming integral to our daily lives by powering a diverse range of devices and applications. Their high energy density, fast power response, recyclability, and mobility advantages have made them the preferred choice for numerous sectors. This paper explores the seamless integration of Prognostics and Health Management within batteries, presenting a multidisciplinary approach that enhances the reliability, safety, and performance of these powerhouses. Remaining useful life (RUL), a critical concept in prognostics, is examined in depth, emphasizing its role in predicting component failure before it occurs. The paper reviews various RUL prediction methods, from traditional models to cutting-edge data-driven techniques. Furthermore, it highlights the paradigm shift toward deep learning architectures within the field of Li-ion battery health prognostics, elucidating the pivotal role of deep learning in addressing battery system complexities. Practical applications of PHM across industries are also explored, offering readers insights into real-world implementations.This paper serves as a comprehensive guide, catering to both researchers and practitioners in the field of Li-ion battery PHM.
The New Agronomists: Language Models are Experts in Crop Management, github
Crop management plays a crucial role in determining crop yield, economic profitability, and environmental sustainability. Despite the availability of management guidelines, optimizing these practices remains a complex and multifaceted challenge. In response, previous studies have explored using reinforcement learning with crop simulators, typically employing simple neural-network-based reinforcement learning (RL) agents. Building on this foundation, this paper introduces a more advanced intelligent crop management system. This system uniquely combines RL, a language model (LM), and crop simulations facilitated by the Decision Support System for Agrotechnology Transfer (DSSAT). We utilize deep RL, specifically a deep Q-network, to train management policies that process numerous state variables from the simulator as observations. A novel aspect of our approach is the conversion of these state variables into more informative language, facilitating the language model's capacity to understand states and explore optimal management practices. The empirical results reveal that the LM exhibits superior learning capabilities. Through simulation experiments with maize crops in Florida (US) and Zaragoza (Spain), the LM not only achieves state-of-the-art performance under various evaluation metrics but also demonstrates a remarkable improvement of over 49\% in economic profit, coupled with reduced environmental impact when compared to baseline methods.
DHNet: A Distributed Network Architecture for Smart Home
With the increasing popularity of smart homes, more and more devices need to connect to home networks. Traditional home networks mainly rely on centralized networking, where an excessive number of devices in the centralized topology can increase the pressure on the central router, potentially leading to decreased network performance metrics such as communication latency. To address the latency performance issues brought about by centralized networks, this paper proposes a new network system called DHNet, and designs an algorithm for clustering networking and communication based on vector routing. Communication within clusters in a simulated virtual environment achieves a latency of approximately 0.7 milliseconds. Furthermore, by directly using the first non-"lo" network card address of a device as the protocol's network layer address, the protocol avoids the several tens of milliseconds of access latency caused by DHCP. The integration of service discovery functionality into the network layer protocol is achieved through a combination of "server-initiated service push" and "client request + server reply" methods. Compared to traditional application-layer DNS passive service discovery, the average latency is reduced by over 50%. The PVH protocol is implemented in the user space using the Go programming language, with implementation details drawn from Google's gVisor project. The code has been ported from x86\_64 Linux computers to devices such as OpenWrt routers and Android smartphones. The PVH protocol can communicate through "tunnels" to provide IP compatibility, allowing existing applications based on TCP/IP to communicate using the PVH protocol without requiring modifications to their code.