Analysis of frequent trading effects of various machine learning models, EconPapers
In recent years, high-frequency trading has emerged as a crucial strategy in stock trading. This study aims to develop an advanced high-frequency trading algorithm and compare the performance of three different mathematical models: the combination of the cross-entropy loss function and the quasi-Newton algorithm, the FCNN model, and the vector machine. The proposed algorithm employs neural network predictions to generate trading signals and execute buy and sell operations based on specific conditions. By harnessing the power of neural networks, the algorithm enhances the accuracy and reliability of the trading strategy. To assess the effectiveness of the algorithm, the study evaluates the performance of the three mathematical models. The combination of the cross-entropy loss function and the quasi-Newton algorithm is a widely utilized logistic regression approach. The FCNN model, on the other hand, is a deep learning algorithm that can extract and classify features from stock data. Meanwhile, the vector machine is a supervised learning algorithm recognized for achieving improved classification results by mapping data into high-dimensional spaces. By comparing the performance of these three models, the study aims to determine the most effective approach for high-frequency trading. This research makes a valuable contribution by introducing a novel methodology for high-frequency trading, thereby providing investors with a more accurate and reliable stock trading strategy.
Measure of Dependence for Financial Time-Series, EconPapers
Assessing the predictive power of both data and models holds paramount significance in time-series machine learning applications. Yet, preparing time series data accurately and employing an appropriate measure for predictive power seems to be a non-trivial task. This work involves reviewing and establishing the groundwork for a comprehensive analysis of shaping time-series data and evaluating various measures of dependence. Lastly, we present a method, framework, and a concrete example for selecting and evaluating a suitable measure of dependence.
C++ Design Patterns for Low-latency Applications Including High-frequency Trading
This work aims to bridge the existing knowledge gap in the optimisation of latency-critical code, specifically focusing on high-frequency trading (HFT) systems. The research culminates in three main contributions: the creation of a Low-Latency Programming Repository, the optimisation of a market-neutral statistical arbitrage pairs trading strategy, and the implementation of the Disruptor pattern in C++. The repository serves as a practical guide and is enriched with rigorous statistical benchmarking, while the trading strategy optimisation led to substantial improvements in speed and profitability. The Disruptor pattern showcased significant performance enhancement over traditional queuing methods. Evaluation metrics include speed, cache utilisation, and statistical significance, among others. Techniques like Cache Warming and Constexpr showed the most significant gains in latency reduction. Future directions involve expanding the repository, testing the optimised trading algorithm in a live trading environment, and integrating the Disruptor pattern with the trading algorithm for comprehensive system benchmarking. The work is oriented towards academics and industry practitioners seeking to improve performance in latency-sensitive applications.
Integrating Tick-level Data and Periodical Signal for High-frequency Market Making
We focus on the problem of market making in high-frequency trading. Market making is a critical function in financial markets that involves providing liquidity by buying and selling assets. However, the increasing complexity of financial markets and the high volume of data generated by tick-level trading makes it challenging to develop effective market making strategies. To address this challenge, we propose a deep reinforcement learning approach that fuses tick-level data with periodic prediction signals to develop a more accurate and robust market making strategy. Our results of market making strategies based on different deep reinforcement learning algorithms under the simulation scenarios and real data experiments in the cryptocurrency markets show that the proposed framework outperforms existing methods in terms of profitability and risk management.
Trade Co-occurrence, Trade Flow Decomposition, and Conditional Order Imbalance in Equity Markets
The time proximity of high-frequency trades can contain a salient signal. In this paper, we propose a method to classify every trade, based on its proximity with other trades in the market within a short period of time, into five types. By means of a suitably defined normalized order imbalance associated to each type of trade, which we denote as conditional order imbalance (COI), we investigate the price impact of the decomposed trade flows. Our empirical findings indicate strong positive correlations between contemporaneous returns and COIs. In terms of predictability, we document that associations with future returns are positive for COIs of trades which are isolated from trades of stocks other than themselves, and negative otherwise. Furthermore, trading strategies which we develop using COIs achieve conspicuous returns and Sharpe ratios, in an extensive experimental setup on a universe of 457 stocks using daily data for a period of three years.