- Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning - Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. But new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, missing and needed contributions. But also propose directions, research opportunities and solutions to accelerate advances in this field.
- Network Migration Problem: A Logic-based Benders Decomposition Approach Driven by Column Generation and Constraint Programming - Telecommunication networks frequently face technological advancements and need to upgrade their infrastructure. Adapting legacy networks to the latest technology requires synchronized technicians responsible for migrating the equipment. The goal of the network migration problem is to find an optimal plan for this process. This is a defining step in the customer acquisition of telecommunications service suppliers, and its outcome directly impacts the network owners' purchasing behaviour. We propose the first exact method for the network migration problem, a logic-based Benders decomposition approach that benefits from a hybrid constraint programming-based column generation in its master problem and a constraint programming model in its subproblem. This integrated solution technique is applicable to any integer programming problem with similar structure, most notably the vehicle routing problem with node synchronization constraints. Comprehensive evaluation of our method over instances based on six real networks demonstrates the computational efficiency of the algorithm in obtaining quality solutions. We also show the merit of each incorporated optimization paradigm in achieving this performance.
- Analysis of the Effectiveness of Face-Coverings on the Death Ratio of COVID-19 Using Machine Learning - The recent outbreak of the COVID-19 led to the death of millions of people worldwide. To stave off the spread of the virus, the authorities in the US employed different strategies, including the mask mandate order issued by the states' governors. In the current work, we defined a parameter called the average death ratio as the monthly average of the number of daily deaths to the monthly average number of daily cases. We utilized survey data to quantify people's abidance by the mask mandate order. Additionally, we implicitly addressed the extent to which people abide by the mask mandate order that may depend on some parameters like population, income, and education level. Using different machine learning classification algorithms, we investigated how the decrease or increase in death ratio for the counties in the US West Coast correlates with the input parameters. The results showed that for most counties there, the mask mandate order decreased the death ratio reflecting the effectiveness of this preventive measure on the West Coast. Additionally, the changes in the death ratio demonstrated a noticeable correlation with the socio-economic condition of each county. Moreover, the results showed a promising classification accuracy score as high as around 90%.
- Deep Learning Technique using Low Sampling rate for residential Non Intrusive Load Monitoring - Individual device loads and energy consumption feedback is one of the important approaches for pursuing users to save energy in residences. This can help in identifying faulty devices and wasted energy by devices when left On unused. The main challenge is to identity and estimate the energy consumption of individual devices without intrusive sensors on each device. Non-intrusive load monitoring (NILM) or energy disaggregation, is a blind source separation problem which requires a system to estimate the electricity usage of individual appliances from the aggregated household energy consumption. In this paper, we propose a novel deep neural network-based approach for performing load disaggregation on low frequency power data obtained from residential households. We combine a series of one-dimensional Convolutional Neural Networks and Long Short Term Memory (1D CNN-LSTM) to extract features that can identify active appliances and retrieve their power consumption given the aggregated household power value. We used CNNs to extract features from main readings in a given time frame and then used those features to classify if a given appliance is active at that time period or not. Following that, the extracted features are used to model a generation problem using LSTM. We train the LSTM to generate the disaggregated energy consumption of a particular appliance. Our neural network is capable of generating detailed feedback of demand-side, providing vital insights to the end-user about their electricity consumption. The algorithm was designed for low power offline devices such as ESP32. Empirical calculations show that our model outperforms the state-of-the-art on the Reference Energy Disaggregation Dataset (REDD).
Monday, November 15. 2021
Interesting Papers - II
Trackbacks
Trackback specific URI for this entry
No Trackbacks