In recent years, electricity suppliers have installed millions of smart meters worldwide to improve the management of the smart grid system. These meters collect a large amount of electrical consumption data to produce valuable information to help consumers reduce their electricity footprint. However, having non-expert users (e.g., consumers or sales advisors) understand these data and derive usage patterns for different appliances has become a significant challenge for electricity suppliers because these data record the aggregated behavior of all appliances. At the same time, ground-truth labels (which could train appliance detection and localization models) are expensive to collect and extremely scarce in practice. This paper introduces DeviceScope, an interactive tool designed to facilitate understanding smart meter data by detecting and localizing individual appliance patterns within a given time period. Our system is based on CamAL (Class Activation Map-based Appliance Localization), a novel weakly supervised approach for appliance localization that only requires the knowledge of the existence of an appliance in a household to be trained. This paper appeared in ICDE 2025.
Artificial intelligence (AI) has long promised to improve energy management in smart grids by enhancing situational awareness and supporting more effective decision-making. While traditional machine learning has demonstrated notable results in forecasting and optimization, it often struggles with generalization, situational awareness, and heterogeneous data integration. Recent advances in foundation models such as Transformer architecture and Large Language Models (LLMs) have demonstrated improved capabilities in modelling complex temporal and contextual relationships, as well as in multi-modal data fusion which is essential for most AI applications in the energy sector. In this review we synthesize the rapid expanding field of AI applications in the energy domain focusing on Transformers and LLMs. We examine the architectural foundations, domain-specific adaptations and practical implementations of transformer models across various forecasting and grid management tasks. We then explore the emerging role of LLMs in the field: adaptation and fine tuning for the energy sector, the type of tasks they are suited for, and the new challenges they introduce. Along the way, we highlight practical implementations, innovations, and areas where the research frontier is rapidly expanding. These recent developments reviewed underscore a broader trend: Generative AI (GenAI) is beginning to augment decision-making not only in high-level planning but also in day-to-day operations, from forecasting and grid balancing to workforce training and asset onboarding. Building on these developments, we introduce the concept of the Agentic Digital Twin, a next-generation model that integrates LLMs to bring autonomy, proactivity, and social interaction into digital twin-based energy management systems.
Universal Differential Equations (UDEs), which blend neural networks with physical differential equations, have emerged as a powerful framework for scientific machine learning (SciML), enabling data-efficient, interpretable, and physically consistent modeling. In the context of smart grid systems, modeling node-wise battery dynamics remains a challenge due to the stochasticity of solar input and variability in household load profiles. Traditional approaches often struggle with generalization and fail to capture unmodeled residual dynamics. This work proposes a UDE-based approach to learn node-specific battery evolution by embedding a neural residual into a physically inspired battery ODE. Synthetic yet realistic solar generation and load demand data are used to simulate battery dynamics over time. The neural component learns to model unobserved or stochastic corrections arising from heterogeneity in node demand and environmental conditions. Comprehensive experiments reveal that the trained UDE aligns closely with ground truth battery trajectories, exhibits smooth convergence behavior, and maintains stability in long-term forecasts. These findings affirm the viability of UDE-based SciML approaches for battery modeling in decentralized energy networks and suggest broader implications for real-time control and optimization in renewable-integrated smart grids.
With the development of smart grids, High-Dimensional and Incomplete (HDI) Power Load Monitoring (PLM) data challenges the performance of Power Load Forecasting (PLF) models. In this paper, we propose a potential characterization model VAE-LF based on Variational Autoencoder (VAE) for efficiently representing and complementing PLM missing data. VAE-LF learns a low-dimensional latent representation of the data using an Encoder-Decoder structure by splitting the HDI PLM data into vectors and feeding them sequentially into the VAE-LF model, and generates the complementary data. Experiments on the UK-DALE dataset show that VAE-LF outperforms other benchmark models in both 5% and 10% sparsity test cases, with significantly lower RMSE and MAE, and especially outperforms on low sparsity ratio data. The method provides an efficient data-completion solution for electric load management in smart grids.
Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting
Accurate electricity price forecasting (EPF) is crucial for effective decision-making in power trading on the spot market. While recent advances in generative artificial intelligence (GenAI) and pre-trained large language models (LLMs) have inspired the development of numerous time series foundation models (TSFMs) for time series forecasting, their effectiveness in EPF remains uncertain. To address this gap, we benchmark several state-of-the-art pretrained models--Chronos-Bolt, Chronos-T5, TimesFM, Moirai, Time-MoE, and TimeGPT--against established statistical and machine learning (ML) methods for EPF. Using 2024 day-ahead auction (DAA) electricity prices from Germany, France, the Netherlands, Austria, and Belgium, we generate daily forecasts with a one-day horizon. Chronos-Bolt and Time-MoE emerge as the strongest among the TSFMs, performing on par with traditional models. However, the biseasonal MSTL model, which captures daily and weekly seasonality, stands out for its consistent performance across countries and evaluation metrics, with no TSFM statistically outperforming it.
Federated Learning for Smart Grid: A Survey on Applications and Potential Vulnerabilities
The Smart Grid (SG) is a critical energy infrastructure that collects real-time electricity usage data to forecast future energy demands using information and communication technologies (ICT). Due to growing concerns about data security and privacy in SGs, federated learning (FL) has emerged as a promising training framework. FL offers a balance between privacy, efficiency, and accuracy in SGs by enabling collaborative model training without sharing private data from IoT devices. In this survey, we thoroughly review recent advancements in designing FL-based SG systems across three stages: generation, transmission and distribution, and consumption. Additionally, we explore potential vulnerabilities that may arise when implementing FL in these stages. Furthermore, we discuss the gap between state-of-the-art (SOTA) FL research and its practical applications in SGs, and we propose future research directions. Unlike traditional surveys addressing security issues in centralized machine learning methods for SG systems, this survey is the first to specifically examine the applications and security concerns unique to FL-based SG systems. We also introduce FedGridShield, an open-source framework featuring implementations of SOTA attack and defense methods. Our aim is to inspire further research into applications and improvements in the robustness of FL-based SG systems.
Despite high reliability, modern power systems with growing renewable penetration face an increasing risk of cascading outages. Real-time cascade mitigation requires fast, complex operational decisions under uncertainty. In this work, we extend the influence graph into a Markov decision process model (MDP) for real-time mitigation of cascading outages in power transmission systems, accounting for uncertainties in generation, load, and initial contingencies. The MDP includes a do-nothing action to allow for conservative decision-making and is solved using reinforcement learning. We present a policy gradient learning algorithm initialized with a policy corresponding to the unmitigated case and designed to handle invalid actions. The proposed learning method converges faster than the conventional algorithm. Through careful reward design, we learn a policy that takes conservative actions without deteriorating system conditions. The model is validated on the IEEE 14-bus and IEEE 118-bus systems. The results show that proactive line disconnections can effectively reduce cascading risk, and certain lines consistently emerge as critical in mitigating cascade propagation.