Learning to Hear Broken Motors: Signature-Guided Data Augmentation for Induction-Motor Diagnostics
The application of machine learning (ML) algorithms in the intelligent diagnosis of three-phase engines has the potential to significantly enhance diagnostic performance and accuracy. Traditional methods largely rely on signature analysis, which, despite being a standard practice, can benefit from the integration of advanced ML techniques. In our study, we innovate by combining ML algorithms with a novel unsupervised anomaly generation methodology that takes into account the engine physics model. We propose Signature-Guided Data Augmentation (SGDA), an unsupervised framework that synthesizes physically plausible faults directly in the frequency domain of healthy current signals. Guided by Motor Current Signature Analysis, SGDA creates diverse and realistic anomalies without resorting to computationally intensive simulations. This hybrid approach leverages the strengths of both supervised ML and unsupervised signature analysis, achieving superior diagnostic accuracy and reliability along with wide industrial application. The findings highlight the potential of our approach to contribute significantly to the field of engine diagnostics, offering a robust and efficient solution for real-world applications.
Experimental Covert Communication Using Software-Defined Radio
The fundamental information-theoretic limits of covert, or low probability of detection (LPD), communication have been extensively studied for over a decade, resulting in the square root law (SRL): only $L\sqrt{n}$ covert bits can be reliably transmitted over time-bandwidth product $n$, for constant $L>0$. Transmitting more either results in detection or decoding errors. The SRL imposes significant constraints on hardware realization of provably-secure covert communication. Thus, experimental validation of covert communication is underexplored: to date, only two experimental studies of SRL-based covert communication are available, both focusing on optical channels. Here, we report our initial results demonstrating the provably-secure covert radio-frequency (RF) communication using software-defined radios (SDRs). These validate theoretical predictions, open practical avenues for implementing covert communication systems, as well as raise future research questions.
Automatic Stage Lighting Control: Is it a Rule-Driven Process or Generative Task?
Stage lighting plays an essential role in live music performances, influencing the engaging experience of both musicians and audiences. Given the high costs associated with hiring or training professional lighting engineers, Automatic Stage Lighting Control (ASLC) has gained increasing attention. However, most existing approaches only classify music into limited categories and map them to predefined light patterns, resulting in formulaic and monotonous outcomes that lack rationality. To address this issue, this paper presents an end-to-end solution that directly learns from experienced lighting engineers -- Skip-BART. To the best of our knowledge, this is the first work to conceptualize ASLC as a generative task rather than merely a classification problem. Our method modifies the BART model to take audio music as input and produce light hue and value (intensity) as output, incorporating a novel skip connection mechanism to enhance the relationship between music and light within the frame grid.We validate our method through both quantitative analysis and an human evaluation, demonstrating that Skip-BART outperforms conventional rule-based methods across all evaluation metrics and shows only a limited gap compared to real lighting engineers.Specifically, our method yields a p-value of 0.72 in a statistical comparison based on human evaluations with human lighting engineers, suggesting that the proposed approach closely matches human lighting engineering performance. To support further research, we have made our self-collected dataset, code, and trained model parameters available at github: Skip-BART
This paper presents a real-time transaction monitoring framework that integrates graph-based modeling, narrative field embedding, and generative explanation to support automated financial compliance. The system constructs dynamic transaction graphs, extracts structural and contextual features, and classifies suspicious behavior using a graph neural network. A retrieval-augmented generation module generates natural language explanations aligned with regulatory clauses for each flagged transaction. Experiments conducted on a simulated stream of financial data show that the proposed method achieves superior results, with 98.2% F1-score, 97.8% precision, and 97.0% recall. Expert evaluation further confirms the quality and interpretability of generated justifications. The findings demonstrate the potential of combining graph intelligence and generative models to support explainable, audit-ready compliance in high-risk financial environments.