This paper critically re-evaluates LLMs' role in causal discovery and argues against their direct involvement in determining causal relationships. We demonstrate that LLMs' autoregressive, correlation-driven modeling inherently lacks the theoretical grounding for causal reasoning and introduces unreliability when used as priors in causal discovery algorithms. Through empirical studies, we expose the limitations of existing LLM-based methods and reveal that deliberate prompt engineering (e.g., injecting ground-truth knowledge) could overstate their performance, helping to explain the consistently favorable results reported in much of the current literature. Based on these findings, we strictly confined LLMs' role to a non-decisional auxiliary capacity: LLMs should not participate in determining the existence or directionality of causal relationships, but can assist the search process for causal graphs (e.g., LLM-based heuristic search). Experiments across various settings confirm that, by strictly isolating LLMs from causal decision-making, LLM-guided heuristic search can accelerate the convergence and outperform both traditional and LLM-based methods in causal structure learning. We conclude with a call for the community to shift focus from naively applying LLMs to developing specialized models and training method that respect the core principles of causal discovery.
ToMAP: Training Opponent-Aware LLM Persuaders with Theory of Mind
Large language models (LLMs) have shown promising potential in persuasion, but existing works on training LLM persuaders are still preliminary. Notably, while humans are skilled in modeling their opponent's thoughts and opinions proactively and dynamically, current LLMs struggle with such Theory of Mind (ToM) reasoning, resulting in limited diversity and opponent awareness. To address this limitation, we introduce Theory of Mind Augmented Persuader (ToMAP), a novel approach for building more flexible persuader agents by incorporating two theory of mind modules that enhance the persuader's awareness and analysis of the opponent's mental state. Specifically, we begin by prompting the persuader to consider possible objections to the target central claim, and then use a text encoder paired with a trained MLP classifier to predict the opponent's current stance on these counterclaims. Our carefully designed reinforcement learning schema enables the persuader learns how to analyze opponent-related information and utilize it to generate more effective arguments. Experiments show that the ToMAP persuader, while containing only 3B parameters, outperforms much larger baselines, like GPT-4o, with a relative gain of 39.4% across multiple persuadee models and diverse corpora. Notably, ToMAP exhibits complex reasoning chains and reduced repetition during training, which leads to more diverse and effective arguments. The opponent-aware feature of ToMAP also makes it suitable for long conversations and enables it to employ more logical and opponent-aware strategies. These results underscore our method's effectiveness and highlight its potential for developing more persuasive language agents. Code is available at: GitHub ToMAP.
In the complex landscape of traditional futures trading, where vast data and variables like real-time Limit Order Books (LOB) complicate price predictions, we introduce the FutureQuant Transformer model, leveraging attention mechanisms to navigate these challenges. Unlike conventional models focused on point predictions, the FutureQuant model excels in forecasting the range and volatility of future prices, thus offering richer insights for trading strategies. Its ability to parse and learn from intricate market patterns allows for enhanced decision-making, significantly improving risk management and achieving a notable average gain of 0.1193% per 30-minute trade over state-of-the-art models with a simple algorithm using factors such as RSI, ATR, and Bollinger Bands. This innovation marks a substantial leap forward in predictive analytics within the volatile domain of futures trading.
A critical assessment of reinforcement learning methods for microswimmer navigation in complex flows
Navigating in a fluid flow while being carried by it, using only information accessible from on-board sensors, is a problem commonly faced by small planktonic organisms. It is also directly relevant to autonomous robots deployed in the oceans. In the last ten years, the fluid mechanics community has widely adopted reinforcement learning, often in the form of its simplest implementations, to address this challenge. But it is unclear how good are the strategies learned by these algorithms. In this paper, we perform a quantitative assessment of reinforcement learning methods applied to navigation in partially observable flows. We first introduce a well-posed problem of directional navigation for which a quasi-optimal policy is known analytically. We then report on the poor performance and robustness of commonly used algorithms (Q-Learning, Advantage Actor Critic) in flows regularly encountered in the literature: Taylor-Green vortices, Arnold-Beltrami-Childress flow, and two-dimensional turbulence. We show that they are vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algorithm that has established dominance across a wide range of benchmarks in the reinforcement learning community. In particular, our custom implementation of PPO matches the theoretical quasi-optimal performance in turbulent flow and does so in a robust manner. Reaching this result required the use of several additional techniques, such as vectorized environments and generalized advantage estimation, as well as hyperparameter optimization. This study demonstrates the importance of algorithm selection, implementation details, and fine-tuning for discovering truly smart autonomous navigation strategies in complex flows.
Large Wireless Localization Model (LWLM): A Foundation Model for Positioning in 6G Networks
Accurate and robust localization is a critical enabler for emerging 5G and 6G applications, including autonomous driving, extended reality (XR), and smart manufacturing. While data-driven approaches have shown promise, most existing models require large amounts of labeled data and struggle to generalize across deployment scenarios and wireless configurations. To address these limitations, we propose a foundation-model-based solution tailored for wireless localization. We first analyze how different self-supervised learning (SSL) tasks acquire general-purpose and task-specific semantic features based on information bottleneck (IB) theory. Building on this foundation, we design a pretraining methodology for the proposed Large Wireless Localization Model (LWLM). Specifically, we propose an SSL framework that jointly optimizes three complementary objectives: (i) spatial-frequency masked channel modeling (SF-MCM), (ii) domain-transformation invariance (DTI), and (iii) position-invariant contrastive learning (PICL). These objectives jointly capture the underlying semantics of wireless channel from multiple perspectives. We further design lightweight decoders for key downstream tasks, including time-of-arrival (ToA) estimation, angle-of-arrival (AoA) estimation, single base station (BS) localization, and multiple BS localization. Comprehensive experimental results confirm that LWLM consistently surpasses both model-based and supervised learning baselines across all localization tasks. In particular, LWLM achieves 26.0%--87.5% improvement over transformer models without pretraining, and exhibits strong generalization under label-limited fine-tuning and unseen BS configurations, confirming its potential as a foundation model for wireless localization.
Transforming Decoder-Only Transformers for Accurate WiFi-Telemetry Based Indoor Localization
Wireless Fidelity (WiFi) based indoor positioning is a widely researched area for determining the position of devices within a wireless network. Accurate indoor location has numerous applications, such as asset tracking and indoor navigation. Despite advances in WiFi localization techniques -- in particular approaches that leverage WiFi telemetry -- their adoption in practice remains limited due to several factors including environmental changes that cause signal fading, multipath effects, interference, which, in turn, impact positioning accuracy. In addition, telemetry data differs depending on the WiFi device vendor, offering distinct features and formats; use case requirements can also vary widely. Currently, there is no unified model to handle all these variations effectively. In this paper, we present WiFiGPT, a Generative Pretrained Transformer (GPT) based system that is able to handle these variations while achieving high localization accuracy. Our experiments with WiFiGPT demonstrate that GPTs, in particular Large Language Models (LLMs), can effectively capture subtle spatial patterns in noisy wireless telemetry, making them reliable regressors. Compared to existing state-of-the-art methods, our method matches and often surpasses conventional approaches for multiple types of telemetry. Achieving sub-meter accuracy for RSSI and FTM and centimeter-level precision for CSI demonstrates the potential of LLM-based localisation to outperform specialized techniques, all without handcrafted signal processing or calibration.